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NATIONAL ADVISORY COMfECTZE FOR AEROI'iAU!lXCS 

TECHNICAL NOTE 2279 

THREE-DIMENSIONAL COMPRESSIBLE LAMINAR BOUNDARY -MYEZ FLOW 

By Franklin K. Moore 

The equations governing the three-dimensional compressible 
laminar boundary layer with variable viscosity and thermal con- 
ductivity are shown t o  be simplified by: 

1. The introduction of a two-corrrponent vector potential  

2. The use of a transformation t o  change the equations in to  
nearly incorqressible form 

3- The use of a further transformtion tha t  changes the equa- 
t ions in to  nearly Cartesian form when a coordinate system 
appropriate t o  axial or conical symmetry i s  used 

Plow over f la t  plates  with arbi t rary leading-edge contours is  
discussed and it is  deduced that,  under cer ta in  circumstancek, the 
boundary-hyer equations are inapplicable in  certain res t r ic ted  
regions of the boundary layer. 

Problem involving conical potential  flow are discussed, and 
it is shown t h a t  use of the Blasius similari ty m i a b l e  permits 
reduction of the number of independent variables. 

INTRODUCTION 

The techniques f o r  predicting the behavior of the two-dimensional 
laminar flow of a viscous f lu id  are rather w e l l  developed. Because 
of the in t e re s t  in  a i r c r a f t  applications, m o s t  of the e f for t  has been 
applied to problems of the boundary layer, which i s  associated with 
f l i g h t  a t  substantial  speeds through a medium of low kinematic 
Viscosity. 
dimensional compressible laminar boundary layer was conducted a t  the 
NACA Lewis laboratory and is presented herein. 

An investigation of methods f o r  t reat ing the  three- 

Certain features of the present body of theory fo r  plane cases 
furnish guidance: 
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1. Lagrange's stream function may be introduced in order iden- 
t i c a l l y  t o  sa t i s fy  the equation of continuity, thus p e d t t i n g  two 
of the dependent variables (velocity components) t o  be expressed in 
terms of a single function. 

2. In the absence of a pressure gradient, Blasius (reference 1, 
paragraph 53) shows that, f o r  the incompressible case, the two inde- 
pendent variables (space coordinates) may be combined in to  a single 
coordinate of similarity, thus reducing the prQblem t o  that of solving 
an ordinary d i f fe ren t ia l  equation f o r  the stream function. 

3. The K'hdn-Pohlhausen integral  method (reference I, para- 
graj?h 60) provides a valuable engineering approach, the simplicity 
of which i s  obtained.at the expense of res t r ic t ion  t o  a particular 
family of velocity prof i les  . 

4. Howarth (reference 2 )  shows that a cer ta in  transformation 
of coordinates resu l t s  i n  momentum equations of nearly incompres- 
s ib le  form, provided that a l inear  dependence of viscosity on tem- 
perature i s  assumed. 

5 .  With regard t o  the energy equation, i f  the Prandtl number 
i s  l a n d  the wall is  an insulating surface, the enthalpy remains 
constant through the boundary layer. Furthemore, if  no pressure 
gradient exists,  a term in the solution f o r  temperature depending 
l inear ly  on' the velocity prof i le  may be introduced i n  order t o  take 
in to  account heat transfer from,a yall a t  constant temperature 
(Crocco, reference 3,  and von  arma an, reference 4). 

I n  a l l  the theories previously mentioned and i n  the present 
report, use i s  made of the usual order-of-magnitude assumptions pro- 
ceeding from the concept of a thin boundary layer beyond which exis ts  
potential  flow undisturbed by the presence of the boundary layer. 
(See, f o r  example, reference 1, paragraphs 44 and 45.) 

The three-dimensional problem is, of course, greatly complicated 
by the number of dependent and independent variables appearing i n  the 
equations of motion. 
p a l a p p r m c h  would appear t o  provide adequate simplification of the 
problem. 
flow) u t i l i z ing  two parameters; namely, a boundary-layer "thickness" 
and tha loca l  angle of divergence between the outer streamlines end 
the l imiting streamline a t  the w a l l .  
possible m y  of formulating an integral  approach; in fac t ,  the very 
complexity of the three-dimensional problem tends t o  make it possible 
t o  devise a number of such formuhtions. For example, the two 

When such d i f f icu l ty  is encountered, an in te -  

Prandtl (reference 5) proposes a method (for incompressible 

This method is not the only 
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independent parameters cen be defined as the two boundary-layer thick- 
nesses 6, and 6 ,  corresponding to the two velocity components u 
and w in plenes parallel to the wall. This formulation would 
presumably be useful if it were expected that one component would 
approach its stream value much more rapidly than the other. 

The relative merits of Prandtl's formulation and some other, such 
as the one just described, are difficult to assess; nor is it a 
simple mtter to make a judicious selection of profile functions to 
be used in a three-dimensional problem. 
out that the setting-up of an integral method requires a background 
of experience gained from solutions to the complete equations of 
motion. Por this reason, the present report is concerned with means 
of attacking the differential boundary-layer equation and w i l l  not 
discuss integral methods further. 

Prandtl (reference 5) points 

The equations of motion have been solved in several three- 
dimensional ccses : 
R .  T. Jones (reference 7) have contributed to the incompressible solu- 
tion f o r  a yawed infinite cylinder. 
yroblem is that the velocity components in a plane normal to the 
cylinder may be obtained by two-dimensional theory and may then be 
used to determine the axial component;. Problems involving spherical 
or  axial symmetry have received considerable attention. 
(reference 8) provides an analysis of the axially symmetric incompres- 
sible flow over bodies of revolution, wherein various changes of vari- 
able permit the direct use of plane boundary-layer theory. In unavaila- 
ble work, Mangler has extended this analysis to permit consideration of 
compressibility. 

Prandtl (reference 5) # Sears (reference 6), and 

The most striking result in this 

Mangler 

The solutions mentioned in the preceding paragraph are obtained by 
discovering methods by which plane-flow results may be directly adapted. 
Many problems in the mechanics of the laminar boundary layer remain in 
which this simplification is impossible and the analysis to follow will 
investigate methods of solving this type of problem. 

SYMBOLS 

The following symbols are used in this report: 

C constant appearing in viscosity-temperature relation 

cp 

cv 

specific heat at constant pressure 

specific heat at constant volume 
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E internal energy, cvT 

F 

f 

G 

i3 

component of vector potential in implicit coordinates 

component of vector potential in conical coordinates 

component of vector potential in implicit coordimtes 

component of vector potential in conical coordinates 

H 

k 

P r  

P 

R 

T 

t 

1 - 2 2  total enthalpy in boundary hpr, 

arbitrary constant 

Prandtl number, cpp/~ 

cpT + ~ ( u  i-w ) 

pressure 

gas constant 

distance used in definition of implicit coordinates 

dimensionless coordinates 

absolute temperature 

time 

velocity components 

coordinates 

boundary -layer thickness 

enthalpy, cpT 

IC coefficient of thermal conductivity 
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1 
2 
-- 

x Blasius 8irIxi.hrity variable, q t  

P coefficient of viscosity 

2 
e r 7 1 , k  equal to k21 r a, krY, and SI respectively 

J o  

5 

1 
2 

P density -- 
CI simflaxity w ' i a b l e  for flat plate, Y(X-Xo) 

components of vector potential 

Subscripts : 

1 denotes conditions in flow at outer edge of boundary layer 

01 denotes evaluation at some reference condition 

0 denotes conditions at leading edge (see figs-. 1 and 2.) 

Subscript notation for partial differentiation is used where convenient. 
Primes denote ordinary differentiation. 

THEORE 

Fquations of Laminas Compressible Boundary Iayer 

In Cartesian tensor notation, the equations governing the motion 
of a compressible viscous gas may be written &s 



6 NACA TN 2279 

p = PRT 

-Equations of motion in Cartesian coordinates. - On the assumption 
of "boundary-layer flow" an obvious extension to three dimensions of 
the argument presented in reference 1 (paragraph 44) permits equa- 
tions (1.) to be reduced to the following form8 where a Cartesian 
system of coordinates (x,y,z) and veloofty (u,v,w) is used; 
v are taken n o m 1  to a plane surface bounding the flow: 

y and 
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p = PRT ( 2 f )  

The argument contained i n  reference 1 (paragmph 45) indicates 
that  fo r  plane flow, these Cartesian equations apply i n  general 
orthogonal coordinates, where y is taken normal t o  the surface, and 
thus apply t o  flow over curved surfaces, provided that the surface 
curvature is moderate and with the exception that,  fo r  curved surfaces, 
dp/ay is, i n  general, of order 1. Of course, even through ap/dy is  
of order 1, the change i n  pressure across a thin boundary layer is 
small and may be neglected. This argument applies equally well t o  
three-dimensional flows. 

Equations of motion i n  implicit coordinates. - The boundary-layer 
equations are now written in an orthogonal coordinate system wherein: 

1. The body surface i s  defined by y = 0. 

2. A point is defined by the distances x, y, and r ( x )  E 
where the distance r(x)  s depends implicit ly on the distance x, 
and where r (x )  has the dimensions of length. 

This coordinate system would be useful i n  the analysis of flow 
about bodies for which a coordinate can be defined such that body 
cross sections are similar for various values of x. The quantity 
r(x) then gives the variation of scale of these cross sections. For 
a body of revolution, x m y  be measured along generators; the cross 
sections a re  circular;  and r ( x )  
cross section. For a conical body, x may be measured along rays 
from the apex, and r(x) is  a l inear function of x, giving the scale 
change of the ( in  general) noncirc- cross sections. 
componexbs a re  taken t o  Qe u, v, and w i n  the directions X, y, 
and s, respectively. The equations of motion a re :  

x 

may be taken as the radius of a 

The velocity 
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ap t order of 1 
% 
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(33) 

p = PRT ( 3 0  

Simplification of enerQy equation. - Equations (28) and ( Z f )  may 
be combined with equation (Ze) t o  yield 

where 8 5 cpT. The specific heats cv aad ep, and the Prandtl 
nwiber Pr = c p p / ~  are considered constant. Eurthermore, if t h e  
Prandtl number is  assumed equal t o  1, the sum of equation (a) m u l -  
t i p l i ed  by u, equation ( Z c )  multiplied by w, and equation (4) 
yields, f o r  steady flow, 
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where 

H E cPT + Z(U 1 2 +W 2) 

A special solution of equation (5) is, in accordance with defi- 
nition (6), 

This solution is presented in references 3 and 4 for the plane case. 
Evaluation of the derivative of equation (7) at the w a l l ,  where 

equation (5) for the case of zero heat transfer through the 
y = 0. 
the coordinate system used and hence is a special solution of 
equation (3e). 

= w - 0, shows that equation ( 7 )  is the solution of the energy 

The result of equation (7) is, of course, independent of 

In references 3 and 4, it was observed that for plane flow, 

when Pr = 1 an& 'p = 0) a solution to the energy equation ik ax 
H = A + B u  (8) 

where A and B are cons-ixmts to be determined from the boundary 
conditions on the temperature profile. In three dimensions, it is 
clear that if 

state form of equation (2a) for u is identical to equation (5) for H. 
Thus, equation (8) is a solution of equation (5). 
velocity components vanish at tke w a l l ,  equation (8) must correspond 
to cases involving heat transfer from a wall at constant temperature. 
Because H must be constant in the outer potential flow, solutibn (8) 
is further restricted to casee wherein ul (the value of u at 
outer edge of boundary layer) is constant. An example of a situation 
wherein solution (8) applies is furnished by t he  yawed infinite cyl- 
inder, where u is in the direction of the cylinder axis. The anal- 
ogous result for incompressible flow is mentioned in reference 6.  

2 (but not necessarily '2) vanishes, then the steady- aZ 

Inasmuch as the 

Vector Potential 

Definitions. - Ln order to reduce the number of dependent vari- 
ables appeaxing in the boundary-fayer equations, it is customary in 
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problems of steady plane flow to introduce the s t r e a m  function, 
which identically satisfies the equation of continuity (equation (2d) ) j 
that is, 

a\Jr - a x  Pv = J 
It would be desirable to secure a similar advantage in the analysis 
of three-dimensional steady flows, which m y  be done by writing 

pu ii av as 

J 
Equations (10) represent one of several ways in which two functions 
can be defined in order to satisfy equation (2d) identically for 
steady motion. The particular arrangement of equations (10) is chosen 
to yrovide symmetry of \v and x against 9 and z. Of course, for 
phme f low,  equations (10) reduce to equations (9) -  

For every steady plane flow satisfying %he equation of continuity, 
a stream function exists, according to definition (9). 
theorem is provided by Urab (reference 9, paragraph 59). 
of the functions Cp and $ defined by equations (10) for every 
three-dimensional flow should, however, be proved. 

Proof of this 
Ekistence 

A well-known theorem of vector analysis slates that any contin- 
uously differentiable vector having a vanishing divergence may be 
expressed as the curl of a vector potential. 
tinuity, the mass-flow vector 13% s P(iu+jv+kw) - -  has vanishing 
divergence. 
lJ-Il-tjA2+l$3 

By the equation of con- 

~ U S ,  for any steady flow, a veGtor potential 
exists that is defined by the quation 
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or, in Cartesian coordinates, 

1 
Therefore, for every three-dimensional steady flow the following 
functions exist: 

Differentiation of these expressions yields equations (10) 
that 

provided 

The foregoing argument sdfices t o  show the existence of the func- 
tions \Ir and 'p for  three-dimensional steady flows in general. 
Requirement (12) is certainly met by most flows encountered in 
practice. 

Apparently, the theorem quoted at the beginning of the pre- 
ceding paragraph may be extended to provide that the three-dilnensional 
vector potential may be written as any one of the three possible two- 
comgonent vector potentials. The existence of each of the three 
arrangements may be contingent on a restriction simllar to equa- 
tion (12), which, it might be noted, has been shown here to be suf- 
ficient but baa not been shown to be a necessary condition. 
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Equation (3d) is satisfied in two-dimensional 
steady flow by defining 

\ 

and in thee-dimensional 

I# such that 

flow by defining v and 
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(axiany spmtrio) 

9 such that 

For two-dimensional flow, definitions (14) reduce to definitions (13). 
The existence of the functions and Cp defined in equations (143 
m y  be established in a mnner similar to that employed to show t h e  
existence of the analogous functions appearing in equations (10). 

The quantities v and (? are hereinafter referred to as "com- 
ponents of the vector potential" because (in the Cartesian system, 
for example) equations (10) m y  formally be obtained from equa- 
tions (11) by setting A.3 = q ,  A1 = -9  , A2 = 0. 

Differential equations for vector potential. - 
(a) Cartesian coordinates : Substituting eqmtions (10) into 

equations (2) and (4) for steady flow and adopting the subscript 
notation for partial differentiation yield 
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or, f o r  Pr = 1 and zero heat transfer, equation (15c) is replaced by 

(b) Implicit coordinates: Substituting definitions (14) into 
equations (3) and an equation analogous to equation (4) yields, fo r  
steady f l o w ,  

, 
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1 1 
r 

oi?, for P r  = 1 and zero heat transfer, equation (16c) is replaced by 

Boundary conditions on vector potential. - The usual boundary con- 
ditions on velocities applied in problems of the steady laminar bound- 
a r y  layer are, using Caxteslan coordinates, 
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Another boundary condition is  usually required; for example, a t  the 
leading edge of an a i r f o i l  it is  necessary t o  establish the condi- 
t ions under which the i n i t i a l  growth of the boundary layer takes 
place 

Boundary condition (18), which involves a combination of 
and 0 , would probably be rather awkward t o  apply; the separation 
of u/ and CP with respect t o  their  boundary conditions therefore 
seems desirable. The following argument shows tha t  t h i s  separation 
can be mde, so that condition (18) m y  be replaced by 

9 

v (x,o,z) = rP(X>O,d = 0 (19 1 
Suppose that a solution has been obtained f o r  a given problem, sub- 
ject  t o  conditions (17)  and (18). Equation (18) implies tha t  

where h i  is some arbi t rary function. Thus, 

cp(x,O,z) = -Jhi  dz + hg(x) 

where h2 and h3 are arbi t rary functions. New q w t i t i e s  $ * 
and Q* are now defined: 
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I* I V -Jhl dx - h2(z) 

Thus, in  accordance with definit ions ( lo) ,  

v*y =gy = PU 

The functions lf* and CP * yield the correct velocity compo- 
nents, s a t i s fy  the same differencia1 equation as V and CP, and sat- 
i s fy  conditions ( 1 7 )  and condition (19), which is  a special  case of 
condition (18). 
by condition (19), with the sole effect  that the Bolutions for 9 
and cp w i l l  be made unique. 

It is  therefore correct t o  replace condition (18) 

The same argument applies in cases wherein definit ions (14) 
a re  used. 

Transformations of Equations of Motion 

Viscosity-temperature relation. - It is assumed tihat the equation 

my be used t o  represent adequately the variation of viscosity i n  the 
boundary layer. The constant C and the reference s t a t e  T, may be 
chosen t o  give the best  possible agreement with, f o r  example, Suther- 
landts  formula, over the temperature range contemplated. A complete 
discussion of equation (ZO), as applied t o  flow with vanishing pres- 
sure gradient, is provided by Chapman and Rubesin i n  reference 10. 
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Howarth's transformations. - From reference 2, the following 
t r m s f o m t i o n s  a re  mde i n  order t o  bring equations (15) and (16) 
into forms approaching those of the corresponding incompressible 
equations : 

X f x  

1 
Before transforming equations (15) and (16) according t o  defini-  

t ions (21) ,  it is  desirable t o  make the physical quantitiea involved 
dimensionless. Hereinafter, the following quantit ies on the l e f t  
will be considered t o  be measured relat ive t o  the quantit ies on the 
right, where the subscript denotes some reference condition: 

u,v,w re la t ive  t o  u m  

X,Y,Z,Y,X,Y,~ r e h t i v e  t o  F ~ / P ~ U -  

P re la t ive  t o  p a  

T re la t ive  t o  u,2/2cp 

2 p re la t ive  t o  p-u, 

\y, cp (as i n  equations (10) and (15)) relat ive t o  (v~C/Pmu&&,ugs 

w,cp (as i n  equations (14) and (16)) re la t ive  t o  ( p m C / f & b ) k u ~  

0 re la t ive  t o  u, 2 
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Won equations (21), inasmuch as 
tion of y, 

p is not to be considered a func- 

and from equations (lo), 

1 
After relations (24) are introduced, equation (23) becomes 

n: 
0 e 
N 
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or, using the equation of state (2f), equation (Z6a)  is obtained. 
r e s t  of equations (26), corresponding t o  equations (15) in  Cartesian 

. coordinates, and equations (28), corresponding t o  equations (16) i n  
implicit coordinates, a r e  obtained i n  a similar manner. 

The 

In  Cartesian coordinates, 

P T - = p  - 
POO TOO 

or, f o r  Pr J 1 and zero heat transfer, 

( Z W  

equation (26c) is replaced by 

Combining equations and (25) leads to the  following bow- 
dary conditions on 

Boundary conditions on temperatwe a re  required (only a t  Y = C D  if 
equation (268) i 8  used) and a condition must be imposed to  describe 
the initial growth of the boundary Layers. 
on vector potential. ) 

(See Botznaary conditions 
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In implicit coordinates, from equations (14), 

Equations (16) become 

I (27 

P = p -  T 
pal Tpoo 

or, f o r  P r  = 1 and zero heat transfer, equation (28c)  is  replaced by 

c --l 
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Two advantages are provided by use of transformation (21): 

1. The velocities are directly related to the vector potential; 
t;hus the satisfaction of boundary conditions is easier than under the 
original formulation, which included a variation w i t h  density. 

2-  The transformed equations themselves closely resemble the 
corresponding equations Ff incompressible motion. 

Mangler's transformations- - Equations (27) and (28) maybe 
brought into form approaching those of equations (25) and (26) by 
means of a transformtion introduced by Mangler (reference 8 )  for the 
purpose of relating axially symmetric flow to plane flow. 

. lowing transformation is to be applied: 
The fo l -  

1 
7 I kTY 

- s  % =  

1 
where k is an arbitrary constant. The functions p, p,  and T are 
not transformed. Thus, 
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whence, 

w = - c P y = %  1- 
r 

which may be divided throughout by k2r3, yielding equation (31a). 
The rest of equations (31) are obtained in a similar manner: 

1 e + -  1 
7i &3 Gtle c 
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or, fo r  Pr  = 1 and zero heat transfer, equation (31c) is replaced by 

Equations (27)  and the analog of condition (19) lead t o  the following 
boundary conditions on F and H: 

1 

Boundary conditions on temperature are needed {only a t  
equation (31e) is  used) and the i n i t i a l  growth of the boundary layer 
must be described. 

q = a  if 

(See Boundary conditions on vector potential. ) 

Transformation (29) thus confers the following advan-ges:, 

1. 
manner as i n  Cartesian coordimtes, thus simplifying the appiication 
of boundary conditions. 

The veloci t ies  are related t o  the potential  in the same  

2. The transformed equations approach Cartesian form. 

Further d i rec t  simplification of the boundary-layer equations 
does not seem feasible. Further simplifications, expecially with 
regard t o  the reduction of the number of independent variables, must 
be sought in  the consideration of special cases or c h s s e s  of problems. 

APPLICATIONS 

Reduction t o  Problems of Known Solution 

The following examples are chosen t o  show how the foregoing 
theory specializes t o  some of the lcnown boundary-layer f l o w s .  
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Two-dimensional flow. - If it i s  supposed that two-dimensional 
flow obtains i n  the x,y-plane, then 

w = o  

whence, from equations (25), 

and, for example, equations (26) become 

and so for th .  
terns of the stream function $ 

These a re  the egmtions of motion for  plane flow, in  

Ajcially symmetric flow. - In the case of axial ly  symmetric flow, 
the implicit coordinate system is  used and 
the radius of a body of revolution. 

r(x) is  identified with 
Thus, by the ax ia l  symmetry, 

w = o  

. . 

whence, from equations (30) , 

and equations (31) reduce t o  equations of the same form as equa- 
t ions (32). 
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Flow about yawed infinite cylinder. - The Cartesian coordinate 
system is used for f l o w  about a yawed infinite cylinder; the x,y-plane 
is taken a8 the cross-sectional plane of the cylinder and the coor- 
dinate z is measured parallel to the axis of the cylinder. Thus, 
the potential flow has components in both the x- and z-directions. 
Therefore, in this case, 

and equations (26) become 

If Pr = 1 and the wall temperature is constant, then, from equa- 
tions (8) and (26e), 

where a and b are constants to be determined from boundary con- 
ditions on the temperature profile. 

Because of compressibility, the analytical separation of vy and 
If incom- 

- 
'Py discussed in references 5 to 7 does not strictly apply. 
pressible flow is consiaered, then equations (33) become 
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where p is  constant. It is then possible t o  solve first f o r  T, 
and subsequently t o  solve fo r  , knowing 

Boundary Layer on F la t  P l a t e s  of Arbitrary Leading-EdGe Contour 

The three-dimensional body considered here and the coordinates 
used i n  the analysis o f - i t s  effect  on a uniform stream a re  shown i n  
figure l ( a ) .  The surface of the body is  a f la t  plate  a t  zero angle 
of a t tack with respect t o  the stream. 

The di f fe ren t ia l  equations of motion are, from equations (26a) 
and (26b), written f o r  zero pressure gradient as  

where 

J - 
w = QY 

When urn = u l  = constant, the boundary conditions a re  

- 
\IIy(x,o,z) = Xx,o,z) = 0 

'p y(x,o,z) =T(x,o,z) = 0 
- 
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The r e su l t  CP ; 0 cbviously satisfies equation (34b) and bow- 
dary conditions (35b) and (35d). This solution is presumably unique 
and may be interpreted t o  mean that i n  t h i s  case there is no secondary 
flow in  the absence of a pressure gradient transverse t o  the s t r e a m .  
Equation (34a) then becomes 

The solution of equation (36), subject t o  boundary condi- 
t ions (3%) and (35c), m y  be obtained by defining, by analogy with 
plane flow over a f la t  plate  (reference 1, paragraph 53), 

and 

whence, 

v 

( 3 W  

The application of equations (37) and (38) transforms equation (36) 
as follows: 

(37 1 

The appropriate boundary conditions are 

p ( m )  = 1 

p ( 0 )  = @ ( O )  = 0 I 
The solution of equation (39) subject t o  conditions (40) was given 
by Blasius and i s  presented i n  reference 1 (paragraph 53). 

Clearly, thia. solution t o  the problem of figure l ( a )  i s  valid 
f o r  any form Q(Z) of the lading-edge contour. In particular, it 
is valid fo r  the special configuration shown i n  figure l(b). 
case, however, the Z-derivatives of flow properties in the boundary 

In t h i s  
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layer (for example 
sufi'er discontinuities at the plane Z = 0. 
be shown by writing, using equation ( 3 7 ) ,  

I+,, which is related to the shear stress +uz) 
This discontinuity may 

and noting that Xo'(Z) discontinuously changes sign at the plane 
Z = 0. Not only is this circumstance physically inadmissable, 

a2 a2 

dY2 az2 
but it violates the boundary-layer assumption that ->>- 

Apparently, there exists a narrow region extending in the stream 
direction from the apex of the body in figure l(b) wherein the 
usual boundary-layer assumptions, and hence equations (33), do not 
apply. Outside of this region, hereinafter referred to as "wake", 
the usual quasi-two-dimensional solution of the boundary-layer 
equations for an infinite yawed flat plate is correct. 

A qualitative indication of the existence of such a wake in 
the flow shown in figure l(b) is obtained by imagining a viscous 
wake in the form of a parabolic cylinder extending downstream froms 
each point of the leading edge. On either side of the X,Y-plane, 
these wakes then provide parabolic envelopes that, although not tan- 
gent to each other, are each tangent to the cylindrical wake pro- 
ceeding from the origin. 
where the parabolic envelopes join to the cylindrical wake, it is 
clearly incorrect to mike the usual boundary-layer assumption 

Thus, in the neighborhood of the X,Y-plane, 

I 

It is natural to suppose that the "wake" shaded region in fig- 
ure l ( b )  has an effective width of the order of the boundary-layer 
thickness and thus that the gross effects of viscosity on the body 
are adequately given by the solution of equations (39) and (40). 
There is the possibility, of course, that the wake herein discussed 
has an over-all effect on the flow due to a difference in stability 
characteristics, as compared with the surrounding bouridary layer. 

E 
IP n 

A wake such as is discussed in the preceding paragraph extends 
downstream from any corner in a leading-edge contour and presents a 
situation similar to that existing close to the leading edge of the 
flat plate, irrespective of the shape of the leading edge; as is 
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well known, the boundary-layer equations do not apply i n  the immediate 
v ic in i ty  of the leading edge. 

The inapplicability of the boundary-layer assmptions t o  a wake 
region extending downstream from a leading-edge corner is a l so  asso.  
ciated w2th body configurations neighboring that of the f la t  plate  
with a leading-edge corner; that is, i f  the plate  of figure l (b)  i s  
given a small thickness, the solution of the boundary-layer equations 
then shows a variation of % a t  the plane 2 = 0 which, though 
not discontinuous, is too rapid t o  be consistent w i t h  the boundary- 

layer assumption >h2 . A s  the thickness is  further increased, 

t h i s  variation becomes l e s s  and less rapid, and, for  sgme order of 
thickness, become6 consistent w i t h  the boundary-layer assumption. A 
similar argument applies if the curvature of the leading edge is  
imagined t o  be changed from inf in i ty  a t  the corner t o  some large 
f i n i t e  value. 

a2 
az 

Boundary Lager Associated w i t h  Supersonic Conical 

Potential  Flows 

If the inviscid equations of motion a re  subject t o  boundary con- 
dit ions on f lu id  properties that a re  constant along rays having a 
common focal point, it has been shown (reference 11) that the solution 
yields f lu id  properties that are constant along any such ray i n  the 
f l o w  f ie ld ;  tha t  is, that f lu id  properties (velocity, pressure, and 
so  for th)  a r e  constant along each of a farmLly of rays proceeding from 
a common focal point. 
symmetry." Solutions of t h i s  ty-pe exist ,  in general, only f o r  super- 
sonic flows. 

This property is referred t o  as "conical 

For boundary-layer calculations, the significant feature of 
flows wherein the outer (potential) solution is  conical is that pres- 
sure and velocity gradients a t  the outer edge of the boundary layer 
vanish i n  the direction of rays from a focal  point. 
stance, the equations of motion (31) appropriate t o  the implicit  
coordinate system a re  used. 
distance nornus1 t o  the ray i n  the surface of the body by xs (that 
is, r(x) x),and dis-ce normal t o  the surface by y. (See 
f ig .  2(a).) Equations (29) thus become 

In this cirdum- 

Distance along a ray is  denoted by x, 
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e = k 2 r  x2 dX = 1 2 3  3kX 

T = k x Y = k x Y  

t = s  J 
Equations (31) may therefore be written, inasmuch as, by conical 
symmetry of the potential  f l o w ,  p I  = 0, 

~ ' ( c )  wT t. + - e =e G$ ' (e )  -i- - 6 t  - p [ ] P', (42c) 

The circumstance tha t  p = 0 suggest8 that the Blasius simil- 

a r i t y  variable q t  (reference 1, paragraph 53) can be employed; 
that is, the boundary-layer development along rays f r o m  the origin 
may be expected t o  be parabolic. Thus, the following definit ions 
are made, by analogy with the Blasius analysis: 

-1/2 I 
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whence, 

U = Fg = f h  

w = % = g A  
Thus, equations (42) become 

or, for Pr = 1 and zero heat transfer, equation (44c) is replaced by 

i (gh)' = constant (44d) 
2 

T + ( fh)  
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or, iising the equation of s ta te ,  

The value of P given by equation (44e) may be substituted direct ly  , 

into equations (44a) and (44b). The following boundary conditions 
apply : 

1 

The equations (44) involve (if  equation (448) is  used) two 
dependent variables f and g and two independent variables h 
and It seems reasonable t o  conclude that the solution of these 
equations f o r  many cases i s  feasible provided modern high-speed com- 
puting techniques a re  used- 

5. 

In the l ight  of the discussion of f la t -p la te  flow contained i n  
the preceding section, certain observations may be mde concerning 
applications of equations (44) : 

The flow about the body shown i n  figure l(b) may'be considered 
a special case of boundary-layer flow about a body with conical 
symmetry. 
t o  the coordinate system used herein f o r  conical bodies. It m y  be 
shown that the solution given i n  the preceding section i n  Cartesian 
coordinates i s  consistent w i t h  the form required by equations (43) 
i n  conical coordinates: 
ponents i n  conical coordinates (fig.  '(b)) are seen t o  be 

In figure 2(b) t h i s  f l a t  del ta  wing is  drawn with reference 

From equation (38b), the velocity com- 

} (45) 
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The distance X-% 
ical coordinates, 

in Cartesian coordinates (fig. l(b)) is, in con- 

x cos t -  x sin 6 cot 
Thus, the a of equation (37) is, in conical coordinates, 

-112 
0 = Y (x cos r, - x sin c cot (0) 

-ll2 Los c (1 - cot 6 cot ( 0 )  I =Yx 

or, f r o m  equations (43)) 

Therefore, when equations (45) and (46) are combined, it is seen that 

as supposed in equations (43) 

The example just discussed concerns one of a class of conical 
bodies for which the boundary layer contains a wake of the type dis- 
cussed in the ?receding section; that is, the boundary layer contains 
a narrow region to which the boundary-layer assumptions, and hence 
equations (45), do not apply. 
(or  nearly f l a t )  delta wings or  rectangular wing tips. 

This class of bodies includes flat 

CONCLUSIONS 

Certain of the difficulties encountered in dealing with the equa- 
tions of three-dimensional motion for  a laminar compreesible boundary 
layer may be overcome by: 

1. The introduction of the vector potential in a ntanner that 
permits the expression of the three velocity components in terms of 
two scalar functions. 
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2.. The use of a transformtion of coordinates that has the 
simplifying effect  of re la t ing  the vector potential  t o  the velocity 
components i n  the same manner as f o r  incom2ressible flow. Further, 
the transformed equations are of nearly incompressible form. 
transformation requires the use of a l inear  type of viscosity- 
temperature relation. 

This 

3. The use of a further transformation of coordinates in cases 
where an implicit  coordinate system is employed (for  example, when 
axial or  conical symmetry is  involved), such that the velocity com- 
ponents and vector potential  a r e  related i n  the s a m e  way as i n  Car- 
tesian coordinates. The transformed equations a r e  of nearly C a r t e -  
sian form. 

The condition of constant t o t a l  enthalpy i s  a solution to  the 
energy equation in  three- as well as In two-dimensional cases, when 
the Prandtl number i s ' l  and fo r  zero heat transfer. 
res t r ic t ion  of zero heat transfer is removed, an additional solution 
exis ts  fo r  the to"k1 enthalpy depending l inear ly  on the velocity 
component Ln the direction of isobars of the flow, provided t h i s  
component is  constant i n  the outer flow. 

When the 

The equations herein developed f o r  three-dimensional motion 
reduce direct ly  t o  two-dimensional form fo r  plane or  axial ly  sym- 
metric boundary conditions. 

In cases of flow over f la t  plates a t  zero angle of attack, when 
the leading edge i s  some arbi t rary curve, the flow viewed i n  planes 
paral le l  t o  the stream and perpendicular t o  the plate  is  given by 
the plane Blasius solution. 
t h i s  solution contains discontinuous derivatives a t  the n o m 1  plane 
passing through the corner i n  the streamwise direction. It is  =erred 
that, i n  a narrow region extending downstream from the corner, a 
"smotlning!' process occurs t o  which the boundary-layer equations a re  
not appliceble. This effect  i s  not expected t o  be physically imFor- 
tant, a.lthou@ the possibi l i ty  exis ts  that it af fec ts  s t ab i l i t y  and 
transit ion.  

When the leading edge has a corner, 

When the boundary layer i s  associated with supersonic potential  
flow having conical symmetry, the Bhs ius  similari ty var ia l le  may be 
applied with respect t o  variations i n  n o m 1  planes containing the 
apex. Thus, the laminar boundary-layer development is parabolic 
along rays from the apex. T'ne use of t h i s  information reduces the 
nurn5ei- of independent variables t o  two and is  thus considered t o  bring 
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such problems within the range of effectiveness of modern computing 
techniques, especially if t h s  assumptions of Prandtlnumber equal 
to 1 and zero heat transfer are made. 

Lewis Flight Propulsion hboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, September 5, 19-50. 
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( a )  Smooth leading edge. 

Y 

\ 

(b) Leading edge with corner. 

Figure 1. - Three-dimensional flow over f l a t  plate. 
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(a) General conical body in supersonic flow. 

2279 

(b )  Flat plate with leading-edge corner, 

Figure 2, - Conical bodies described in  implicit coordinate 
sgs t em. 
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